Preface

This issue of *ECS Transactions* contains papers presented at the 13th Symposium on Thin Film Transistor Technologies (TFT 13) held in Honolulu, Hawaii, October 3-5, 2016. This symposium was sponsored by the Electronics and Photonics Division (EPD) of the Electrochemical Society. This is the 26th year of the symposium, which makes it the longest continuous held TFT conference in the world.

The editor wishes to express his sincere appreciation to the following people for their involvement in organizing and conducting the symposium: the authors and presenters of papers, symposium co-organizers, section chairs, my graduate assistants, and ECS staff.

There are 63 papers presented in the TFT 13 symposium. They are divided into 9 sessions: 1) Poly- and μc-Si TFTs, 2) Organic and Other Materials Based TFTs I, 3) Organic and Other Materials Based TFTs II, 4) Ge Materials Based TFTs, 5) Oxide TFT Processes, 6) Oxide TFT Devices, 7) Beyond Display Applications I, 8) Beyond Display Applications II, 9) Posters. Presenters are from universities, industry, and research institutes located in 9 countries or regions, *i.e.*, China, France, Hong Kong, Japan, Korea, Sweden, Taiwan, UK, and USA.

Papers in this issue of *ECS Transactions* are divided into 5 chapters. All papers are published as received, without alteration of their technical contents.

This symposium clearly shows the progress of the TFT science and technology:
— There are still strong R&D activities on the Si-based TFT technology from academia and industry. The main focus is on the development of the manufacturable, high-mobility, crystalline TFTs on the glass or flexible substrate.
— Organic and Ge-related materials for TFTs have been continuously explored.
— Currently, oxide TFTs have attracted most studies. The hottest topics are: new materials for better device performance or reliability, low temperature processes, influences of processes or structures on device characteristics, etc.,
— There are a large number of activities on TFT applications beyond displays. This trend was first forecasted at the beginning of the TFT symposium in 1992. Since TFTs are substrate-independent, low-cost devices, the range of applications is unmatched by other solid state devices.

Yue Kuo
Dow Professor
Thin Film Nano & Microelectronics Research Laboratory
Texas A&M University
College Station, TX
October 2, 2016
Thin Film Transistor Technologies 13 Symposium Co-Organizers:

O. Bonnaud (Université de Rennes I)
H. Hamada (Kinki University)
J. Jang (Kyung Hee University)
Y. Kuo (Texas A&M University)
P.-T. Liu (National Chiao Tong University)
A. Nathan (Cambridge University)
M. Shur (Rensselaer Polytechnic Institute)
Y. Uraoka (Nara Advanced Institute of Science and Technology)

Session Chairs and Co-Chairs:

T. Mohammed-Brahim (Université de Rennes I)
M. Furuta (Kochi University of Technology)
H. Hamada (Kinki University)
J.-i. Hanna (Tokyo Institute of Technology)
A. Hara (Tohoku Gakuin University)
S. Im (Yonsei University)
J. Jang (Kyung Hee University)
T. Kaneko (Japan Display Inc.)
Y. Kuo (Texas A&M University)
S.-H. Park (KAIST)
S. K. Park (Chung-Ang University)
T. Sadoh (Kyushu University)
H.-P. Shieh (National Chiao Tong University)
M. Shur (Rensselaer Polytechnic Institute)
Y. Uraoka (Nara Institute of Advanced Technology)
S. Wagner (Princeton University)
S.-M. Yoon (Kyung Hee University)
Table of Contents

Preface

Chapter 1
Si-based TFTs

(Invited) Present and Future of LTPS Technology
T. Kaneko, T. Nakamura, H. Kimura
3

(Invited) Microcrystalline Silicon Based TFTs and Resistors for Reliable Flexible Electronics
Y. Kervran, K. Kandoussi, H. Dong, S. Janfaoui, N. Coulon, C. Simon, E. Jacques, T. Mohammed-Brahim
13

Microsecond Crystallization of Amorphous Silicon Films on Glass Substrates by Joule Heating
W. E. Hong, J. S. Ro
27

(Invited) Self-Aligned Four-Terminal Low-Temperature Polycrystalline-Silicon Thin-Film Transistors on Glass Substrate Using Continuous-Wave Laser Lateral Crystallization
A. Hara, H. Ohsawa
37

Characterization of (100)-Dominantly Oriented Poly-Si Thin Film Transistors Using Multi-Line Beam Continuous-Wave Laser Lateral Crystallization
T. T. Nguyen, M. Hiraiwa, T. Hirata, S. I. Kuroki
49

Design of Bi-Directional Transmission Gate Driver in Amorphous Silicon Technology for TFT-LCD Application
G. T. Zheng, P. T. Liu, M. C. Wu, I. H. Lu
55

Heterostructure Source-Gated Transistors: Challenges in Design and Fabrication
R. A. Sporea, K. D. G. I. Jayawardena, M. Constantinou, M. Ritchie, A. Brewin, W. Wright, S. R. P. Silva
61
Chapter 2
Organic, Ge- and SiGe- Based Materials for TFTs

(Invited) A New Materials Concept for High Performance Organic Thin Film Transistors
 H. Iino, M. Kunii, J. I. Hanna

Controllably Aligned Ultra-Flexible and High-Performance Organic Single-Crystal Arrays Via Solvent Vapor Annealing for Large Area Soft Electronics
 J. Kang, J. Kim, J. W. Jo, M. G. Kim, J. Kim, S. K. Park

Investigation of High Current Tetracene-TFT Using Surface Nitrided SiO$_2$ Gate Insulator Film
 H. Nakao, K. Hori, Y. Iwazaki, T. Ueno

(Invited) Unseeded Growth of Poly-Crystalline Ge with (111) Surface Orientation on Insulator by Pulsed Green Laser Annealing
 M. Horita, T. Takao, Y. Nieda, Y. Ishikawa, N. Sasaki, Y. Uraoka

(Invited) Low-Temperature Growth of Orientation-Controlled Large-Grain Ge-Rich SiGe on Insulator at Controlled-Position for Flexible Electronics
 T. Sadoh, R. Aoki, T. Tanaka, J. H. Park, M. Miyao

Low-Temperature Formation of Sn-Doped Ge on Insulating Substrates by Metal-Induced Crystallization
 T. Sakai, R. Matsumura, T. Sadoh, M. Miyao

Cooling Rate Dependent High Substitutional Sn Concentration (>10%) in GeSn Crystals on Insulator by Pulsed Laser-Annealing
 K. Moto, R. Matsumura, T. Sadoh, H. Ikenoue, M. Miyao

Chapter 3
Oxide TFTs - Materials and Processes

(Invited) Low-Temperature Processed and Self-Aligned InGaZnO Thin-Film Transistor with an Organic Gate Insulator for Flexible Device Applications
 M. Furuta, T. Toda, G. Tatsuoka, Y. Magari

vi
(Invited) Low-Temperature Sol-Gel Derived Ultra-Flexible Metal-Oxide Thin-Film-Transistors and Their Applications
 J. W. Jo, J. S. Heo, K. T. Kim, J. Kim, M. G. Kim, S. K. Park

123

Inkjet-Printed Oxide TFTs with Solution-Processed Dual Semiconductors
 S. H. Lee, Y. J. Kwack, J. S. Lee, W. S. Choi

127

Improvement of TFT Characteristics for Low-Temperature Solution-Processed Oxide Semiconductors with Hydrogen Injection and Oxidation Process
 M. Miyakawa, M. Nakata, H. Tsuji, Y. Fujisaki, T. Yamamoto

133

Low-Temperature Processed Metal-Semiconductor Field-Effect Transistor with In-Ga-Zn-O/AgOx Schottky Gate
 Y. Magari, S. Hashimoto, K. Hamada, M. Furuta

139

Highly Stable Zinc Oxynitride Thin-Film Transistors with Field-Effect Mobility Exceeding 100 cm²/Vs
 Y. S. Kim, H. S. Kim

145

Prospectively of Carbon-Doped Indium-Tungsten-Oxide Channel TFT for Bias Stress Instability

149

Improvement of Stress Stability in Back Channel Etch-Type Thin Film Transistors with Post Process Annealing
 M. Ochi, A. Hino, H. Goto, K. Hayashi, T. Kugimiya

157

Influence of Passivation Layers on Characteristics of High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistors

163

Chapter 4
Oxide TFTs - Devices

171

(Invited) The Compact Models and Parameter Extraction for Thin Film Transistors
 M. Shur

179

(Invited) Stability under Gate Bias Stressing of Amorphous Oxide Thin Film Transistors
 K. M. Niang, A. J. Flewitt
Chapter 5
TFT Applications - Beyond Displays

(Invited) Highly Robust a-IGZO TFT for Foldable Displays
S. Lee, M. M. Billah, M. Mativenga, J. Jang

(Invited) Intrinsically-Stretchable,Transparent Thin Film Transistors
K. Tong, J. Liang, Q. Pei

Thermoelectric Devices Fabricated Using Amorphous Indium Gallium Zinc Oxide
Y. Fujimoto, M. Uenuma, Y. Ishikawa, Y. Uraoka

A Current Supply with Single Organic Thin-Film Transistor for Charging Supercapacitors
V. Keshmiri, C. Larsen, L. Edman, R. Forchheimer, D. Tu

High-Performance Flexible Hybrid Photosensor Circuits Made by Low-Temperature Solution Processed Metal-Oxide and Organic TFTs
J. Kim, J. Kim, J. Kang, M. G. Kim, Y. H. Kim, S. K. Park

(Invited) Flexible Memory Applications Using Oxide Semiconductor Thin-Film Transistors
S. M. Yoon, S. J. Kim, M. J. Park, D. J. Yun

Improvements in Sensing Responses to Ammonia Gas for the In-Ga-Zn-O Thin-Film Transistor Using Atomic-Layer-Deposited ZnO Nanoparticles as Gas Sensitizers
D. J. Yun, G. H. Seo, W. H. Lee, S. M. Yoon

Formation of ZnO Nanoparticles by Atomic Layer Deposition for the Nonvolatile Memory Thin-Film Transistor Applications
G. H. Seo, D. J. Yun, W. H. Lee, S. J. Kim, S. M. Yoon

(Invited) Transparent Top Gate Oxide TFT with ITO/Ag/ITO Low Resistance Electrode for the Application to the High Speed Operation Fingerprint Sensor Array in the Touch Panel
Extended-Gate pH Sensors Using Self-Aligned Four-Terminal Metal Double-Gate Low-Temperature Polycrystalline-Silicon Thin-Film Transistors on Glass Substrate

H. Ohsawa, A. Hara

NMOS Logic Inverters Based on Threshold Voltage-Tunable IGZO Transistors

L. Liang, J. Yu, M. Wang, H. Cao

Author Index
The Electrochemical Society (ECS) is an international, nonprofit, scientific, educational organization founded for the advancement of the theory and practice of electrochemistry, electronics, and allied subjects. The Society was founded in Philadelphia in 1902 and incorporated in 1930. There are currently over 7,000 scientists and engineers from more than 70 countries who hold individual membership; the Society is also supported by more than 100 corporations through Corporate Memberships.

The technical activities of the Society are carried on by Divisions. Sections of the Society have been organized in a number of cities and regions. Major international meetings of the Society are held in the spring and fall of each year. At these meetings, the Divisions and Groups hold general sessions and sponsor symposia on specialized subjects.

The Society has an active publication program that includes the following:

Journal of The Electrochemical Society — (JES) is the leader in the field of electrochemical science and technology. This peer-reviewed journal publishes an average of 550 pages of 85 articles each month. Articles are published online as soon as possible after undergoing the peer-review process. The online version is considered the final version and is fully citable with articles assigned specific page numbers within specific issues. The date of online publication is the official publication date of record.

Journal of Solid State Science and Technology — (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012. JSS covers fundamental and applied areas of solid state science and technology including experimental and theoretical aspects of the chemistry and physics of materials and devices. Articles are published online as soon as possible after undergoing the peer-review process. The online version is considered the final version and is fully citable with articles assigned specific page numbers within specific issues. The date of online publication is the official publication date of record.

Electrochemistry Letters — (EEL) is one of the newest journals from ECS launched in 2012. It is dedicated to the rapid dissemination of peer-reviewed and concise research reports in fundamental and applied areas of electrochemical science and technology. Articles are published online as soon as possible after undergoing the peer-review process. The online version is considered the final version and is fully citable with articles assigned specific page numbers within specific issues. The date of online publication is the official publication date of record.

Solid State Letters — (SSL) is one of the newest journals from ECS launched in 2012. It is dedicated to the rapid dissemination of peer-reviewed and concise research reports in fundamental and applied areas of solid state science and technology. Articles are published online as soon as possible after undergoing the peer-review process. The online version is considered the final version and is fully citable with articles assigned specific page numbers within specific issues. The date of online publication is the official publication date of record.

Electrochemical and Solid-State Letters — (ESL) was the first rapid-publication electronic journal dedicated to covering the leading edge of research and development in the field of solid-state and electrochemical science and technology. ESL was a joint publication of ECS and IEEE Electron Devices Society. Volume 1 began July 1998 and contained six issues, thereafter new volumes began with the January issue and contained 12 issues. The final issue of ESL was Volume 16, Number 6, 2012. Preserved as an archive, ESL has since been replaced by SSL and EEL.

Interface — Interface is an authoritative yet accessible publication for those in the field of solid-state and electrochemical science and technology. Published quarterly, this four-color magazine contains technical articles about the latest developments in the field, and presents news and information about and for members of ECS.

ECS Meeting Abstracts — ECS Meeting Abstracts contain extended abstracts of the technical papers presented at the ECS biannual meetings and ECS-sponsored meetings. This publication offers a first look into the current research in the field. ECS Meeting Abstracts are freely available to all visitors to the ECS Digital Library.

ECS Transactions — (ECST) is the online database containing full-text content of proceedings from ECS meetings and ECS-sponsored meetings. ECST is a high-quality venue for authors and an excellent resource for researchers. The papers appearing in ECST are reviewed to ensure that submissions meet generally-accepted scientific standards. Each meeting is represented by a volume and each symposium by an issue.

Monograph Volumes — The Society sponsors the publication of hardbound monograph volumes, which provide authoritative accounts of specific topics in electrochemistry, solid-state science, and related disciplines.

For more information on these and other Society activities, visit the ECS website:

www.electrochem.org