PREFACE

This issue of *ECS Transactions* contains the 39 papers presented at the 11th Symposium on Thin Film Transistor Technologies (TFT 11), held in Honolulu, Hawai‘i, October 8-10, 2012. This symposium was sponsored by the Electronics and Photonics Division (EPD) of the Electrochemical Society.

The editor wishes to express his sincere appreciation to the following people for their involvement in organizing and conducting the symposium: authors and presenters of papers, symposium co-organizers, section chairs, my graduate student Chi-Chou Lin, and the ECS staff.

The TFT 11 symposium includes nine oral presentation sessions: Oxide TFTs and Fabrication Process I, Oxide TFTs and Fabrication Processes II, Oxide TFT Device and Reliability, Si-based TFTs I, Si-based TFTs II, Graphene and Organic TFTs, TFT Structures and Materials, Advanced Applications, and Novel Materials and Processes. In addition, a Poster section was held in the evening of October 9. A total of 56 papers are presented by authors from industry, research institutes and universities of 10 countries or regions, i.e., Canada, China, France, Germany, Holland Japan, Korea, Taiwan, the United Kingdom, and the United States of America. All papers are published as received, without alteration of their technical contents.

While the symposium series start the third decade, papers presented in this meeting show some interesting trends on the technology development.

— First, the interest in the Si-based TFTs is still strong. The direction is toward the improvement of mobility, e.g., by forming polycrystalline and nanocrystalline Si or the non-FET structure.

— Second, there are many discussions on oxide TFTs. They can be summarized in two areas: exploring the fabrication methods and improving the reliability. Although the mobility of the oxide TFT can be an order of magnitude higher than that of the a-Si:H TFT, issues in the above two areas need to be solved before practical applications, e.g., in mass production of large-area displays or electronics.

— Third, there are continuous research interests in organic and graphene TFTs, e.g., in improving device performance.

— Fourth, TFT applications beyond the traditional rigid LCDs have been constantly explored. New functions, AMOLED, and flexible electronics are areas that attract research efforts.
Thin Film Transistor Technologies 11 Symposium Co-Organizers

T. Asano (Kyushu University)
O. Bonnaud (Université de Rennes I)
S. Fonash (Pennsylvania State University)
H. Hamada (Panasonic)
M. Hatano (Tokyo Institute of Technology)
J. Jang (Kyung Hee University)
Y. Kuo (Texas A&M University)
W. Milne (Cambridge University)
A. Nathan (Cambridge University)
J. Rowlands (Thunder Bay Regional Res. Inst.)
M. Shur (Rensselaer Polytechnic Institute)

Session Chairs and Co-Chairs

O. Bonnaud (Université de Rennes I)
S. Fonash (Pennsylvania State University)
M. Furuta (Kochi University of Technology)
H. Hamada (Panasonic)
M. P. Hong (Korea University)
H. Hosono (Tokyo Institute of Technology)
R. Ishihara (Delft University of Technology)
J. Jang (Kyung Hee University)
Y. Kuo (Texas A&M University)
H. H. Lee (Myongji University)
P. T. Liu (National Chiao Tung University)
P. Migliorato (Cambridge University)
K. Takechi (NLT Technologies)
Table of Contents

Preface

Chapter 1
Si-based TFTs

(Invited) Twenty Five Years of Improvement of the Silicon Based TFT: From As-Deposited Polycrystalline Silicon to Nanostructured Silicon Deposited at Very Low Temperature
T. Mohammed-Brahim and O. Bonnaud

(Invited) Beyond the Current Horizontal of Silicon Thin Film Technology: Light-Soaking Free Nano-Crystal Embedded Polymorphous Silicon Thin Film by Neutral Beam Assisted CVD at Room Temperature
M. Hong and J. Jang

Characteristics of N-Type Planar Junctionless Poly-Si Thin-Film Transistors
C. Lin, H. Lin, and T. Huang

Grain Growth Control during Micro-Thermal-Plasma-Jet Irradiation Using Amorphous Si Strips and Slit Masks
Y. Fujita, S. Hayashi, K. Sakaite, and S. Higashi

Thick Single Grain Silicon Formation with Microsecond Green Laser Crystallization
A. Arslan, H. Kahleri, P. Oesterlin, D. Mofrad, R. Ishihara, and K. Beenakker

Layer Transfer and Simultaneous Crystallization of Amorphous Si Films with Mid-Air Structure Induced by Near-Infrared Semiconductor Diode Laser Irradiation
K. Sakaite, Y. Kobayashi, S. Nakamura, M. Akazawa, M. Ikeda, and S. Higashi

Single-Grain Si TFTs Fabricated by Liquid-Si and Long-Pulse Excimer-Laser

Characteristics of Nanocrystalline Silicon Films Deposited by Cat-CVD Below 100 °C
T. Song, K. Keum, S. Kang, J. Park, J. Kim, and W. Hong
Chapter 2
Oxide TFTs and Fabrication Process

Deposition of Low Stress Amorphous Zinc Tin Oxide at Ambient Temperature Using a Remote Plasma Sputtering Process Suitable for Delicate Substrates
S. M. Pfaendler, G. Ercolano, J. L. MacManus-Driscoll, and A. J. Fiewitt

MgZnO/ZnO Heterostructure Field-Effect Transistors Fabricated by RF-Sputtering
I. Cheng, B. Wang, H. Hou, and J. Chen

A-InGaZnO Thin-Film Transistor with Non-Vacuum Processed InGaZnO/AlOx Gate Dielectric Stack
M. Furuta, T. Kawaharamura, T. Toda, and D. Wang

Simple Aqueous Solution Route for Fabrication High Performance Oxide TFT
B. Bae, Y. Hwang, J. Seo, and G. Choi

Fabricating Multiple Channeled Zinc Oxide Thin Film Transistor Via Sol-Gel Method
G. Chiou, S. Liu, S. Chen, and H. Chen

Laser Patterned Junctionless In-Plane-Gate Oxide Thin-Film Transistors Arrays
L. Zhu and Q. Wan

Effects of Ultra-Violet Treatment on Electrical Characteristics of Solution-Processed Oxide Thin-Film Transistors
J. Lee, S. Song, D. Kang, Y. Kim, J. Kwon, and M. Han

Dual In-Plane-Gate Thin-Film Transistors Gated by Chitosan on Paper Substrates
Q. Wan and W. Dou

Chapter 3
Oxide TFT Device and Reliability

(Invited) Top-Gate Effects in Dual-Gate Amorphous InGaZnO$_x$ Thin-Film Transistors
K. Takechi, S. Iwamatsu, T. Yahagi, Y. Watanabe, S. Kobayashi, and H. Tanabe
(Invited) Channel Width and Channel Length Dependencies in Amorphous-Oxide-Semiconductor Thin-Film Transistors: From a Device Structure Perspective
M. Maitivenga, J. Um, R. Mruthyunjaya, J. Chang, G. Heiler, T. Tredwell, and J. Jang

Influence of Thermal Stress and Kinetic Bias Stress on the Electrical Performance of Mixed Oxide Thin Film Transistors
R. Vemuri and T. L. Alford

Improvement of the Photo-Bias Stability of Zn-Sn-O Field effect Transistors by an Ozone Treatment
B. Yang, S. Oh, Y. Kim, and H. Kim

Influence of Annealing Conditions on the Bias Temperature Stability of MgZnO Thin Film Transistors
Y. Tsai, J. Chen, and I. Cheng

Mixed Oxide Thin Film Transistors under Combinatory Optical Irradiation and Electrical Bias
T. L. Alford, R. Vemuri, and W. Mathews

The effect of Zn/Sn Ratio on the Electrical Performance of Amorphous ZrZnSnO (ZZTO) Thin Film Transistors by RF Sputtering
I. Chiu, I. Cheng, and J. Chen

The Stability and Reliability of Mixed Oxide-Based Thin Film Transistors under Gamma Irradiation
T. L. Alford, A. Indluru, R. Vemuri, and K. E. Holbert

Study of Electronic Structure and Film Composition at Back Channel Surface of Amorphous In-Ga-Zn-O Thin Films
A. Hino, T. Kishi, S. Morita, K. Hayashi, and T. Kugimiya

Composition Dependence of the Negative Bias Light Illumination Instability of Indium Zinc Oxide Transistors
S. Oh, B. Yang, Y. Kim, and H. Kim

Scanning Kelvin Probe Microscopy Study on Oxide Thin Film Transistor
J. Park and H. Cha

Chapter 4
Graphene and Organic TFTs

(Invited) All-Chemical Vapor Deposited Graphene/Silicon Nitride TFTs
Thin-Film Transistor Using Dielectrophoretic Assembly of Single-Walled Carbon Nanotubes
T. Toda, T. Kawaharamura, H. Furusawa, and M. Furuta

The Interface Modification of Low-Voltage Pentacene-Based Organic Phototransistors
X. Liu, G. Dong, L. Duan, L. Wang, and Y. Qiu

Chapter 5
Advanced Applications

(Invited) Issues of Backplane Technologies for AMOLED
S. Lee, J. Lee, and M. Han

(Invited) Materials, Processing, and Characterization for Printed Flexible Electronics
W. S. Wong, M. J. Chow, R. Lujan, and T. Ng

(Invited) Transparent Amorphous Oxide Semiconductors for System on Panel Applications
P. Liu, L. Chu, L. Teng, Y. Fan, and C. Fuh

A Novel LTPS TFT Pixel Circuit for Compensating IR Drop of Large Area AMOLED Display
S. Lee, S. Kuk, S. Song, M. Song, and M. Han

Memory Thin Film Transistor with Monolayered Nanoparticles through Chemical and Biological Bindings
H. Lee, H. Jung, M. Kim, Y. Kim, S. Oh, and T. Yoon

Nanocrystal Floating Gate Memory with Indium-Gallium-Zinc-Oxide Channel and Pt-Fe2O3 Core-Shell Nanocrystals
S. Lee, Q. Hu, J. Lee, Y. Baek, H. Lee, and T. Yoon

Ambipolar SnO Thin-Film Transistors and Inverters
L. Liang and H. Cao

Author Index